Perfect codes in the lp metric

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect codes in the lp metric

We investigate perfect codes in Zn in the `p metric. Upper bounds for the packing radius r of a linear perfect code in terms of the metric parameter p and the dimension n are derived. For p = 2 and n = 2, 3, we determine all radii for which there exist linear perfect codes. The non-existence results for codes in Zn presented here imply non-existence results for codes over finite alphabets Zq, w...

متن کامل

Codes and lattices in the lp metric

Codes and associated lattices are studied in the lp metric, particularly in the l1 (Lee) and the l∞ (maximum) distances. Discussions and results on decoding processes, classification and analysis of perfect or dense codes in these metrics are presented. Keywords—Codes and lattices, lp metric, Lee metric, perfect codes.

متن کامل

Quasi-perfect codes in the $\ell_p$ metric

We consider quasi-perfect codes in Z over the `p metric, 2 ≤ p <∞. Through a computational approach, we determine all radii for which there are linear quasi-perfect codes for p = 2 and n = 2, 3. Moreover, we study codes with a certain degree of imperfection, a notion that generalizes the quasi-perfect codes. Numerical results concerning the codes with the smallest degree of imperfection are pre...

متن کامل

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

Perfect Permutation Codes with the Kendall's $\tau$-Metric

The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall’s τ -metric. We prove that there are no perfect single-error-correcting codes in Sn, where n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2016

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2015.11.002